NCI/NCRI Joint Conference June 13-14, 2011 Amnon Shabo (Shvo), PhD HL7 Clinical Genomics WG Co-chair and Modeling Facilitator HL7 Structured Documents WG CDA R2 Co-editor CCD Implementation Guide Co-editor HL7 Clinical Genomics New Specifications Experimental Implementations ### The Mission of HL7 Clinical Genomics Work Group - The HL7 Clinical Genomics Work Group (CGWG) supports the HL7 mission to create and promote its standards by enabling the communication between by enabling the communication by enabli - research information mary and a point a variety of organizations -- including national processes and sponsored research -- and thus the availability of associated with regulated clinical research. - CGWG will strive to achieve common sem Semantics ical and research environments. Conserved Semantics ical and standardization effort i Common Semantics ical and refined to specific realr Common Semantics ical and research environments. Conserved Semantics ical and research environments. ### **Overview of Activities** #### **Three Tracks:** ### v3: - Family History (Pedigree) Topic - Genetic Variations Topic - Gene Expression Topic - CMETs defined by the Domain #### **v2**: #### **v2 Implementation Guides** * The IG "Genetic Test Result Reporting to EHR" is modeled after the HL7 Version 2.5.1 Implementation Guide: Orders And Observations; Interoperable Laboratory Result Reporting To EHR (US Realm), Release 1 #### CDA: A CDA Implementation Guide for Genetic Testing Reports ### Common: - Domain Analysis Models for the various topics - A Domain Information Model (v3) describing the common semantics - Semantic alignment among the various specs - Normative - > DSTU - Informative ## **Main Principles** - HL7/ISO Reference Information Model - Clinical Genomics Statement - Standard grammar of genotype-phenotype associations - Raw genomic patient data - Encapsulate and Bubble Up (through bioinformatics formats) - Domain Information Model - The Genome model Overarching locus and non-locus data - Genomics to EHR Systems - CEN EHR 13606 over HL7 RIM - Specific Clinical Genomics Statements as: - DCMs or Archetypes, over the Clinical Statement model ...we need standard specs derived from a reference information model: # The HL7 RIM - Representing Genomics data ### The DSTU GeneticLocus Model Focal Areas: # **The Phenotype Model** # **Genotype-Phonotype Associations** - In clinical environments: - Observed versus interpretive phenotypes - Observed should reside in the EHR - Interpretive should be related to knowledge base # From Data to Knowledge ### e.g., an OMIM Entry: Despite the dramatic responses to EGFR inhibitors in patients with non-small cell lung cancer, most patients ultimately have a relapse. {12:Kobayashi et al. (2005)} reported a patient with EGFR-mutant, Gefitinib-responsive, advanced non-small cell lung cancer who had a relapse after 2 years of complete remission during treatment with Gefitinib. The DNA sequence of the EGFR gene in his tumor biopsy specimen at relapse revealed the presence of a second mutation ({131550.0006}). Structural modeling and biochemical studies showed that this second mutation led to the Gefitinib resistance. # **Example: Structuring OMIM Entries (cont.)** ### The Underlying Paradigm: Encapsulate & Bubble-up # IBM ### **The Domain Information Model - Genome** # IBM # **Example: Family History XML Encoding** ``` <!-- DAUGHTER --> Taken from a patient pedigree, the - <relationshipHolder> portion related to patient's daughter <id extension="555.011" /> <code code="DAU" /> + <relationshipHolder> <!-- GENOMIC DATA --> - <subjectOf> - <clinicalGenomicChoice> - <clinicalGenomicChoiceGenotype> - <Genotype> - <individualAllele> <code code="BRCA1" codeSystem="[insert GenBank OID]" codeSystemName="GenBank" /> <text>Homo sapiens breast and ovarian cancer susceptibility (BRCA1) complete cds.</text> Point <AlleleSequence> <SequenceVariation> To </individualAllele> </Genotype> phenotype </clinicalGenomicChoiceGenotype> and beyond.... </clinicalGenomicChoice> </subjectOf> <!-- CLINICAL DATA --> + <subjectOf> </relationshipHolder> ``` <!-- end of DAUGHTER data --> ### XML Fusion: Encapsulation of Raw Genomic Data ``` <subjectOf2> <geneticLocus> <component1> <individualAllele moodCode="EVN"> <text>breast cancer 1, early onset</text> <value code="83990" displayName="BRCA1" codeSystemName="NCBI Entrez"> <translation code="20473" displayName="BRCA1" codeSystem="HGNC"/> </value> <component2> <sequence moodCode="EVN"> <code code="BSMLcon3"/> <value mediaType="text/xml"> <bsml:Bsml xmlns:bsml="urn:bsml.org"> <bs/>bsml:Definitions>
bsml:Sequences> <bsml:Sequence id="seq1" molecule="dna" ic-acckey="U14680 REGION: 101..199" db-source="GenBank" title="</p> Raw genomic data represented in BRCA1, exon 2" representation="raw" local-acckey="this could be used by the genetic lab"> <bs/> <bs/> data> GCTCCCA CTCCATGAGG TATTTCTTCA Bioinformatics markup CATCCGTGTC CCGGCCCGGC CGCGGGGAGC CCCGCTTCAT CGCCGTGGGC TACGTGGACG ACACGCAGTT CGTGCGGTTC GACAGCGACG CCGCGAGCCA GAGGATGGAG CCGCGGCCC CGTGGATAGA GCAGGAGGGG CCGGAGTATT GGGACCAGGA GACACGGAAT GTGAAGGCCC AGTCACAGAC TGACCGAGTG GACCTGGGGA CCCTGCGCGG CTACTACAAC CAGAGCGAGG CCG </bsml:Seq-data> </bsml:Sequence> <bsml:Sequence id="seq2" molecule="dna" ic-acckey="U14680 REGION: 200..253" db-source="GenBank" title="</p> BRCA1, exon 3" representation="raw" local-acckey="this could be used by the genetic lab"> <bssyl:Seq-data> GTTCTCA CACCATCCAG ATAATGTATG GCTGCGACGT GGGGTCGGAC GGGCGCTTCC TCCGCGGGTA CCGGCAGGAC GCCTACGACG GCAAGGATTA CATCGCCCTG AACGAGGACC TGCGCTCTTG GACCGCGGCG GACATGGCGG CTCAGATCAC CAAGCGCAAG TGGGAGGCGG CCCATGTGGC GGAGCAGCAG AGAGCCTACC TGGATGGCAC GTGCGTGGAG TGGCTCCGCA GATACCTGGA GAACGGGAAG GAGACGCTGC AGCGCACGG </bsml:Seq-data> </bsml:Sequence> </bsml:Sequences> ``` # JEW ### **HL7 Clinical Genomics v3 Static Models** # CAT ### The HL7 RCRIM CT Laboratory Model-The Pharmacogenomics Extension # **New Specifications under Ballot** # **CDA IG for Genetic Testing Reports** ### Scope Define a universal implementation guide for genetic testing reports that are both human readable and machine-processable ### Design principles - Follow existing report formats commonly used in healthcare & research - Emphasize interpretations & recommendations - Provide general background information on tests performed - Represent interpretation by utilizing patterns of 'genotype-phenotype' associations in the HL7 v3 Clinical Genomics and implement them as harmonized clinical statement entry-level templates in this IG - Reference HL7 Clinical Genomics instances as the place holders of raw data (personal evidences), similarly to referencing images (technically-wise) ### CDA Template Editor: Developed using the MDHT open source tool (OHT) Summary Section Genetic Variations Section Genetic Variations Section Genetic Variations Section #### Draft that has not been clinically validated ### **CDA GTR Section Outline** ### **The Clinical Genomic Statement** - An abstract Clinical Genomic Statement (CGS) template that - has at its core a genomic observation (e.g., a DNA sequence variation) - If it's a major observation, then it should be associated with indications and interpretations, specimen and genomic source class, and optionally associated with performers - If it's an associated observation (e.g., amino acid change), then only the genomic observation is populated and optionally the performers - The CGS abstract template is instantiated by specialized CGS's, e.g., for genetic variations or cytogenetics, as well as for their associated observation ### The Genetic Variation CMET* (passed normative in Jan. 2010) ### **The Gene Expression CMET Draft** # **Experimental Implementations** ### V3 specs - The Genetic Variation and Pedigree models are used in Hypergenes (a European project on essential hypertension, http://www.hypergenes.eu/) - The Family History spec is widely used in (e.g., MGH, HHS) - The Pedigree and Genetic Variation models are used by the Rizzoli institute in Bologna, Italy for orthopedic genetic diseases ### CDA GTR Used in Korea in the uHealth project (Gil Hospital) ### v2 IG Used by Harvard and Intermountain to send genetic testing results message ### **Hypergenes – Essential Hypertension Genomics** ### Challenge & Objectives - An EC-FP7 funded project addressing challenge HEALTH-2007-2.1.1-2: Molecular epidemiological studies in existing well characterized European (and/or other) population cohorts - Objective: To define a comprehensive genetic epidemiology disease model of essential hypertension (EH) by integrating new technologies of high-throughput genotyping with sophisticated statistical-mathematical modeling and methods of genetic epidemiology #### Scientific Coordinator State University of Milano #### Collaborators State University of Milano; Katholieke Universiteit Leuven; Uniwersytet Jagiellonski Collegium Medicum; Sineurra; IMS Research; State Scientific Research Institute of Internal Medicine, Russian Academy of Medical Sciences Siberian Department; Imperial College London; UC San Diego; INSERM - College de France; Warwick Medical School; Prassis-SigmaTau Research Institute, Milano; STMicroelectronics; Losanna & Ginevra University; Pharm-Next; Softeco Sismat Spa, Genoa; Shanghai Institute of Hypertension; Charles University in Prague; Faculty of Medicine in Pilsen; State University of Padova; Medical University of Gdansk # AIBW # **Hypergenes Work Packages** ### The Biomedical Information Infrastructure (BII) Landscape ### **Information Models over RIMon Warehouse** # Instance Generation (Data & Knowledge) # **OWL** Ontology Mapping local Vocabularies # **Data Source** Java API CTS # **Template Model** Representing constraints ### Standard-based Instances (e.g., CDA) ``` ode code="392570002" codeSystem="2.16.840.1.113883.6.96" codeSystemName="SNOMED CT" displayName="Blood pressure finding «value code="185389009" codeSystem="2.16.840.1.113883.6.96" codeSystemName="SNOMED CT" display <statusCode code="completed"/> <width unit="week" value="4"/> centryRelationship typeCode="COMP"> <code code="271649006" codeSystem="2.16.840.1.113883.6.96" codeSystem="2.16.840.113883.6.96" codeSystem="2.16.840.1.113883.6.96" codeSystem="2.16.840.1.113883.6.96" codeSystem="2.16.840.113883.6.96" codeSystem="2.16.840.1138883.6.96" codeSystem="2.16.840.1138883.6.96" codeSys <value unit="mmHg" value="167" xsi:tvpe="PO"/> /entryRelationship> <entryRelationship typeCode="COMP":</pre> <code code="271650006" code5vstem="2.16.840.1.113883.6.96" code5v</p> <value unit="mmHg" value="98" xsi:type="PQ"/> </observation: entryRelationship> <observation classCode="OBS" moodCode="EVN"> <code code="6797001" codeSystem="2.16.840.1.113883.6.96 ``` Conform to the Template Model # Potential Support of Distributed Repositories – Extended IHE XDS ### HughesRiskApps complies with the HL7 standard - Data can be shared with any HL7 compliant software - Data can be uploaded or downloaded to any EHR that has a complete family history section and that is HL7 compliant - http://www.hughesriskapps.net/ ## BioMIMS - Rizzoli - The Client - Medical Genetic Unit of Istituto Ortopecico Rizzoli (IRO) - Goal - Imaging biomarkers hold tremendous potential for accelerating the development of pharmaceuticals and therapeutic devices, as well as for improving the quality of patient care - Develop an imaging biomarkers management solution, leveraging the correlation of bio-medical imaging, clinical and genomic data, based on healthcare standards - Support sophisticated analytics and queries, with special emphasis on pedigree visualization #### Challenges - Collaborative environment with regional, national and international projects, on skeletal genetic diseases - Extensive usage of Imaging data, Genomics data, Clinical Data, Pedigree Information # **BioMIMS - Pedigree Visualization & Access** - Dynamic pedigree visualization - Presentation of all available information for the persons in the pedigree - Clinical, genomic data and medical images - Standard pedigree representation - HL7 v3 Family History - Enables standard based pedigree interoperability - Enables disease risk assessment # v2 Implementation Guide (of Lab) - The IG "Genetic Test Result Reporting to EHR" passed informative ballot - It is modeled after the HL7 Version 2.5.1 Implementation Guide: Orders And Observations; Interoperable Laboratory Result Reporting To EHR (US Realm), Release 1 - Is used in a pilot of information exchange between Partners Healthcare and Intermountain Health Care # v2 Implementation Guide (of Lab) - The IG "Genetic Test Result Reporting to EHR" passed informative ballot - It is modeled after the HL7 Version 2.5.1 Implementation Guide: Orders And Observations; Interoperable Laboratory Result Reporting To EHR (US Realm), Release 1 - Is used in a pilot of information exchange between Partners Healthcare and Intermountain Health Care ## The v2 Message Structure # IEW # **Harvard – Intermountain Exchange Pilot** Partners HealthCare – Copyright 2009 – All Rights Reserved Source: Emerging Clinical Genomics Standards, Mollie Ullman-Cullere, Oct.15, 2009 # v2 Sample Message (Harvard – IHC Pilot) - OBR|1||PM-08-J00094^HPCGG-LMM^2.16.840.1.113883.3.167.1^ISO|Im_DCM-pnIB_L^Dilated Cardiomyopathy Panel B (5 genes)^99LMM-ORDER-TEST-ID||20080702000000|20080702100909||||||||234567891^Pump^Patrick^^^^^ NPI^L|||||20080703000000|||F|||||0000009^Cardiovascular^99HPCGG-GVIE-INDICATION^^^^^Clinical Diagnosis and Family History of DCM|&Geneticist&Gene&&&&NPI^^^^^^HPCGG-LMM&2.16.840.1.113883.3.167.1&ISO|||||||||||||55233-1^Genetic analysis master panel ^LN - SPM|1|||119273009&Peripheral blood&SNM3&&&&0707Intl&&Blood, Peripheral|||||||||20080702000000 - OBR|2||PM-08-J00094-1^HPCGG-LMM^2.16.840.1.113883.3.167.1^ISO|55232-3^Genetic analysis summary panel^LN|||20080702000000||||||||||||20080703000000|||F||||^PM-08-J00094&HPCGG-LMM&2.16.840.1.113883.3.167.1&ISO - OBX|1|CWE|51967-8^Genetic disease assessed^LN||399020009^DCM-Dilated Cardiomyopathy^SNM3^^^0707Intl|||||F|20080702100909||||||||||Laboratory for Molecular Medicine^L^22D1005307^^^CLIA&2.16.840.1.113883.4.7&ISO|1000 Laboratory Lane^Ste. 123^Cambridge^MA^99999^USA^B ### **Summary** - Small group coping with - Various HL7 formats: v3, v2 and CDA - Clinical & Research environments - Developing component models (CMET) to be used in other HL7 domains - Genetic Variation - Gene Expression - CDA Genetic Testing Report (GTR) - Bridge from raw data to human readable reports and bubbled-up data - Model-driven development of standards (use of MDHT CDA Editor) - Call for European Participation...! - An out-of-cycle meeting to kick-off European involvement - Collocated with major EU venues (e.g., MIE 2011) ### The End - Thank you for your attention... - Questions? Contact Amnon at shabo@il.ibm.com - Comments of general interest should be posted to the CG mailing list at <u>clingenomics@lists.hl7.org</u>